The N-Glycosylation of Mouse Immunoglobulin G (IgG)-Fragment Crystallizable Differs Between IgG Subclasses and Strains
نویسندگان
چکیده
N-linked glycosylation of the fragment crystallizable (Fc)-region of immunoglobulin G (IgG) is known to have a large influence on the activity of the antibody, an effect reported to be IgG subclass specific. This situation applies both to humans and mice. The mouse is often used as experimental animal model to study the effects of Fc-glycosylation on IgG effector functions, and results are not uncommonly translated back to the human situation. However, while human IgG Fc-glycosylation has been extensively characterized in both health and disease, this is not the case for mice. To characterize the glycosylation profile of murine IgG-Fc and in addition evaluate the systematic glycosylation differences between mouse strains, sexes, and IgG subclasses, we used nanoliquid chromatography mass spectrometry (nanoLC-MS(/MS)) to look at the subclass-specific IgG Fc-glycopeptides of male and female mice from the strains BALB/c, C57BL/6, CD-1, and Swiss Webster. The structural analysis revealed the presence of predominantly fucosylated, diantennary glycans, with varying amounts of galactosylation and α2,6-sialylation. In addition, we report glycosylation features not previously reported in an Fc-specific way on murine IgG, including monoantennary, hybrid, and high mannose structures, as well as diantennary structures without a core fucose, with a bisecting N-acetylglucosamine, or with α1,3-galactosylation. Pronounced differences were detected between strains and the IgG subclasses within each strain. Especially the large spread in galactosylation and sialylation levels found between both strains and subclasses may vastly influence IgG effector functions. Mouse strain-based and subclass-specific glycosylation differences should be taken into account when designing and interpreting immunological and glycobiological mouse studies involving IgG effector functions.
منابع مشابه
Identification of conformational epitopes on fragment crystallizable region of human Immunoglobulin G by immunoinformatic
Background: Immunoglobulins are a group of proteins have important role in defense against microorganisms. Human immunoglobulins are divided into five classes: IgA, IgM, IgD, IgE and IgG. Immunoglobulin G (IgG) is the highest abundant antibody in serum and extravascular fluids. The extent of serum IgG is related to severity of several diseases such as infections, so IgG has great diagnostic wor...
متن کاملThe three-dimensional structure of the carbohydrate within the Fc fragment of immunoglobulin G.
The IgG molecule, like all antibodies, is a glycoprotein, and with the discovery in 1959 that the rabbit IgG molecule could be split by the action of papain into two Fab (antigen-binding) and one Fc (crystallizable, complementand cell-binding) fragment, the major glycosylation site was found to lie within Fc (Porter, 1959). (The Fc fragment conists of the C-terminal half of each of the two ‘hea...
متن کاملHigh-throughput work flow for IgG Fc-glycosylation analysis of biotechnological samples.
Immunoglobulin G (IgG) fragment crystallizable (Fc) glycosylation is crucial for antibody effector functions such as antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. To monitor IgG Fc glycosylation, high-throughput techniques for glycosylation analysis are needed in the biotechnology industry. Here we describe the development of a fully automated high-throughput m...
متن کاملProduction and purification of polyclonal antibody against F(ab')2 fragment of human immunoglobulin G
Antibodies are essential tools of biomedical and biochemical researches. Polyclonal antibodies are produced against different epitopes of antigens. Purified F(ab')2 can be used for animal’s immunization to produce polyclonal antibodies. Human immunoglobulin G (IgG) was purified by ion exchange chromatography method. In all stages verification method of the purified antibodies was sod...
متن کاملVariable domain-linked oligosaccharides of a human monoclonal IgG: structure and influence on antigen binding.
The variable-domain-attached oligosaccharide side chains of a human IgG produced by a human-human-mouse heterohybridoma were analysed. In addition to the conserved N-glycosylation site at Asn-297, an N-glycosylation consensus sequence (Asn-Asn-Ser) is located at position 75 in the variable region of its heavy chain. The antibody was cleaved into its antigen-binding (Fab) and crystallizing fragm...
متن کامل